The Hopf Bifurcation Theorem in Hilbert Spaces for Abstract Semilinear Equations

نویسندگان

چکیده

We prove a Hopf bifurcation theorem in Hilbert spaces for abstract semilinear equations, which improves classical result by Crandall and Rabinowitz the case where basic are spaces. Actually, our does not need any compactness conditions, leads to wider applications. In particular, can be applied equations unbounded domains of $$\mathbb {R}^n$$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Problems for Semilinear Neutral Differential Equations in Hilbert Spaces

We construct some results on the regularity of solutions and the approximate controllability for neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the controllability of the neutral equations, we first consider the existence and regularity of solutions of the neutral control system by using fractional power of operators and the...

متن کامل

Controllability of Semilinear Stochastic Delay Evolution Equations in Hilbert Spaces

The controllability of semilinear stochastic delay evolution equations is studied by using a stochastic version of the well-known Banach fixed point theorem and semigroup theory. An application to stochastic partial differential equations is given. 1. Introduction. The fixed point technique is widely used as a tool to study the controllability of nonlinear systems in finite-and infinite-dimensi...

متن کامل

Global Solutions of Semilinear Heat Equations in Hilbert Spaces

The existence, uniqueness, regularity and asymptotic behavior of global solutions of semilinear heat equations in Hilbert spaces are studied by developing new results in the theory of one-parameter strongly continuous semigroups of bounded linear operators. Applications to special semilinear heat equations in L(R) governed by pseudo-differential operators are given.

متن کامل

Controllability of Stochastic Semilinear Functional Differential Equations in Hilbert Spaces

In this paper approximate and exact controllability for semilinear stochastic functional differential equations in Hilbert spaces is studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Banach fixed point theorem. Applications to stochastic heat equation are given.

متن کامل

Gleason’s Theorem for non-separable Hilbert spaces: Extended abstract

The probelm of generalizing Gleason’s theorem to the non separable case arose in correspondence with Paul Chernoff. I am very grateful to him for suggesting this charming problem to me. Let H be a Hilbert space. The coefficient field K of H can be either the reals or the complexes. We let P(H) denote the collection of all closed subspaces of H. A Gleason measure on H is a map μ : P(H) → [0, 1] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dynamics and Differential Equations

سال: 2021

ISSN: ['1040-7294', '1572-9222']

DOI: https://doi.org/10.1007/s10884-021-10105-2